Study of ultraviolet light emitting diodes with InGaN quantum dots and lattice matched superlattice electron blocking layers

Author:

Zhang Aoxiang,Yao Jiayi1,Qu Yipu,Wang Fang234ORCID,Liou Juin J.5,Liu Yuhuai234ORCID

Affiliation:

1. Zhengzhou University

2. Institute of Intelligence Sensing, Zhengzhou University

3. Research Institute of Industrial Technology Co. Ltd., Zhengzhou University

4. Zhengzhou Way Do Electronics Co. Ltd.

5. North Minzu University

Abstract

Ultraviolet light emitting diodes (UV-LEDs) face the challenges including insufficient hole injection and severe electron leakage. Quantum dots (QDs) have been proven to provide three-dimensionally localized states for carriers, thereby enhancing carrier confinement. Therefore, UV-LEDs employing InGaN QDs are designed and studied in this paper. The APSYs software is used to simulate UV-LEDs. Simulation results indicate that the QDs effectively improve the electron and hole concentration in the active region. However, UV-LEDs with QDs experience efficiency droop due to serious electron leakage. What’s more, the lattice mismatch between last quantum barrier (LQB) and electron blocking layer (EBL) leads to the polarization field, which induces the downward band bending at the LQB/EBL interface and reduces effective barrier height of EBL for electrons. The AlInGaN/AlInGaN lattice matched superlattice (LMSL) EBL is designed to suppress electron leakage while mitigating lattice mismatch between LQB and EBL. The results indicate that the utilization of QDs and LMSL EBL contributes to increasing the electron and hole concentration in the active region, reducing electron leakage, enhancing radiative recombination rate, and reducing turn-on voltage. The efficiency droop caused by electron leakage is mitigated. When the injection current is 120 mA, the external quantum efficiency is increased to 9.3% and the output power is increased to 38.3 mW. This paper provides a valuable reference for addressing the challenges of insufficient hole injection and severe electron leakage.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Key Program for International Joint Research of Henan Province

Science and Technology Innovation 2025 Major Project of Ningbo

Zhengzhou 1125 Innovation Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3