Signal enhancement of the gas detection based on quartz-enhanced photothermal spectroscopy technology

Author:

Shi Jingqi,Zhao Jing,Zhang Hengbiao,Fu Yulong,Qin Lu,Zhao Yiyang,Feng Yiwen1,Chen Daming2,Wang ZongliangORCID

Affiliation:

1. Shandong University

2. Shandong Sheenrun Optics & Electronics Co., Ltd.

Abstract

This paper presents an improved gas sensor based on the dual-excitation of quartz-enhanced photothermal spectroscopy (QEPTS) using a single quartz tuning fork (QTF) for signal detection. The silver coating on one side of the QTF was chemically etched to increase the laser power interacted with QTF for QEPTS signal excitation. By etching the silver coating on one side of QTF, the reflection structure between the silver coating of the other side of QTF and the external flat mirror was established. The device uses an absorption gas cell with an optical range length of 3 m, making the laser beam interact with the gas more completely and posing more gas concentration information. Acetylene was selected as the target gas to verify the performance of the sensor. The experimental results show that the signal amplitude with a flat mirror was 1.41 times that without a flat mirror, and 2.47 times that of traditional QEPTS sensor. The system has a minimum detection limit (MDL) of 1.10 ppmv, corresponding to a normalized noise equivalent absorption coefficient (NNEA) of 7.14 × 10−9 cm−1·W·Hz−1/2. Allan variance analysis results show that when the integration time is 700 s, the MDL of the system is 0.21 ppmv. The proposed gas sensor can play an important role on detecting trace gas in many fields.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3