Two-color 3D printing for reduction in femtosecond laser printing power

Author:

Akash Anwarul Islam1,Johnson Jason E.1,Arentz Fredrik C.1,Xu Xianfan1ORCID

Affiliation:

1. Purdue University

Abstract

Two-photon polymerization (TPP) has emerged as a favored advanced manufacturing tool for creating complex 3D structures in the sub-micron regime. However, the widescale implementation of this technique is limited partly due to the cost of a high-power femtosecond laser. In this work, a method is proposed to reduce the femtosecond laser 3D printing power by as much as 50% using a combination of two-photon absorption from an 800 nm femtosecond laser and single photon absorption from a 532 nm nanosecond laser. The underlying photochemical process is explained with modeling of the photopolymerization reaction. The results show that incorporating single-photon absorption from a visible wavelength laser efficiently reduces inhibitor concentration, resulting in a decreased requirement for femtosecond laser power. The radical to macroradical conversion is dominated by the reduction in oxygen concentration, while the reduction in photoinitiator concentration limits the threshold power reduction of the femtosecond laser.

Funder

National Science Foundation

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3