Affiliation:
1. Beijing Institute of Graphic Communication
2. National Institute of Metrology
Abstract
Existing hyperspectral image (HSI) super-resolution methods fusing a high-resolution RGB image (HR-RGB) and a low-resolution HSI (LR-HSI) always rely on spatial degradation and handcrafted priors, which hinders their practicality. To address these problems, we propose a novel, to the best of our knowledge, method with two transfer models: a window-based linear mixing (W-LM) model and a feature transfer model. Specifically, W-LM initializes a high-resolution HSI (HR-HSI) by transferring the spectra from the LR-HSI to the HR-RGB. By using the proposed feature transfer model, the HR-RGB multi-level features extracted by a pre-trained convolutional neural network (CNN) are then transferred to the initialized HR-HSI. The proposed method fully exploits spectra of LR-HSI and multi-level features of HR-RGB and achieves super-resolution without requiring the spatial degradation model and any handcrafted priors. The experimental results for 32 × super-resolution on two public datasets and our real image set demonstrate the proposed method outperforms eight state-of-the-art existing methods.
Funder
Beijing Institute of Graphic Communication Project
Projects for Practical Training Program of Beijing Municipal Education Commission
Subject
Atomic and Molecular Physics, and Optics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献