Lightweight deep learning model incorporating an attention mechanism and feature fusion for automatic classification of gastric lesions in gastroscopic images

Author:

Wang Lingxiao1,Yang Yingyun1,Yang Aiming1,Li Ting1

Affiliation:

1. Chinese Academy of Medical Sciences & Peking Union Medical College

Abstract

Accurate diagnosis of various lesions in the formation stage of gastric cancer is an important problem for doctors. Automatic diagnosis tools based on deep learning can help doctors improve the accuracy of gastric lesion diagnosis. Most of the existing deep learning-based methods have been used to detect a limited number of lesions in the formation stage of gastric cancer, and the classification accuracy needs to be improved. To this end, this study proposed an attention mechanism feature fusion deep learning model with only 14 million (M) parameters. Based on that model, the automatic classification of a wide range of lesions covering the stage of gastric cancer formation was investigated, including non-neoplasm(including gastritis and intestinal metaplasia), low-grade intraepithelial neoplasia, and early gastric cancer (including high-grade intraepithelial neoplasia and early gastric cancer). 4455 magnification endoscopy with narrow-band imaging(ME-NBI) images from 1188 patients were collected to train and test the proposed method. The results of the test dataset showed that compared with the advanced gastric lesions classification method with the best performance (overall accuracy = 94.3%, parameters = 23.9 M), the proposed method achieved both higher overall accuracy and a relatively lightweight model (overall accuracy =95.6%, parameter = 14 M). The accuracy, sensitivity, and specificity of low-grade intraepithelial neoplasia were 94.5%, 93.0%, and 96.5%, respectively, achieving state-of-the-art classification performance. In conclusion, our method has demonstrated its potential in diagnosing various lesions at the stage of gastric cancer formation.

Funder

National Natural Science Foundation of China

Chinese Academy of Medical Science health innovation project

Sichuan Science and Technology Program

Tianjin Outstanding Youth Fund Project

CAMS Innovation Fund for Medical Sciences

National High-Level Hospital Clinical Research Funding

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3