Irradiance-tailoring integral-illumination polarization homogenizer based on anamorphic aspheric microlens arrays

Author:

Liu Yue1,Zhu Jingping1,Chen Chen2,Hou Xun1,Wang Yongtian3

Affiliation:

1. Xi’an Jiaotong University

2. Shang Hai OE Technology Co., Ltd.

3. Beijing Institute of Technology

Abstract

In the realm of active polarization detection systems, the imperative for polarization illumination systems with high-uniformity and predefined-shape irradiance distribution is evident. This paper introduces a novel anamorphic aspheric (AAS) microlens array (MLA) integral polarization homogenizer, incorporating projection MLA (PMLA), condenser MLA (CMLA), polarization film (PF), and a sub-image array (SIA) mask based on Kohler illumination principles. Firstly, the optimal design of an AAS-based projection sub-lens is proposed to facilitate the creation of a short-working-distance, predefined-geometric and sharp polarization irradiance tailoring. The SIA mask is constituted by plenty of predistortion SIs, which are generated through a combination of chief ray tracing and the radial basis function (RBF) image warping method. In addition, accompanied with tolerance sensitivity analysis, detailed analysis of stray light generation factors and proposed elimination or suppression methods further ensure the engineering reliability and stability of the proposed system. A compact integral-illumination polarization homogenizer design example is realized with an overall irradiance uniformity exceeding 90% and a volume of 25 mm × 25 mm × 18.25 mm. Different predefined-geometrical-profile and high-uniformity polarization irradiance distribution can be achieved by substituting different SIA masks and PFs, without replacing MLA optical elements, which greatly saves cost. Substantial simulations and experiments corroborate the efficacy of our polarization homogenizer.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3