Second harmonic enhancement effect in double U split-ring resonators

Author:

Hu Jiahao,Zhao Chaoying1ORCID

Affiliation:

1. Shanxi University

Abstract

Frequency multiplication plays an important role in spectrum research; therefore, in order to achieve enhancement of the second harmonic, the internal structure of nonlinear plasma metamaterial cells becomes more and more complex. The original harmonic oscillator model only regards the cell as a single harmonic oscillator, and a complete understanding of the physical processes involved in harmonic generation experiments in plasmonics is still lacking. In the case in which the plasma structure in a single cell becomes more and more complex, it is not reasonable to regard the entire cell as a single nonlinear oscillator. So expanding the harmonic oscillator model becomes more significant. In this paper, the internal structure of the proposed double U split-ring resonators (DU-SRRs) is regarded as two harmonic oscillators with different resonant frequencies, and the generation process of the enhanced second harmonic is explained by the resonance theorem. The second and third order nonlinear coefficients of the metamaterial are calculated, and the theoretical second harmonic conversion efficiency is obtained by using the second order nonlinear coefficients. Compared with the simulation results of the DU-SRR based on the split-ring resonator, we validate this classical theory as well as the associated numerical algorithm. The ability of the DU-SRR to enhance the second harmonic is proved, and the physical changes inside the cell and the reasons for the enhancement are explained in detail. This method can be used to analyze the nonlinear phenomena in metamaterials with complex cell structures.

Funder

Shanxi University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3