Affiliation:
1. Beijing Institute of Technology
Abstract
The commercial success of radio-frequency acoustic filters in wireless communication systems has launched aluminum nitride (AlN) as one of the most widely used semiconductors across the globe. Over recent years, AlN has also been investigated as an attractive photonic integrated platform due to its excellent characteristics, such as enormous bandgaps (∼6.2 eV), quadratic and cubic optical nonlinearities, Pockels electro-optic effects, and compatibility with the complementary metal-oxide semiconductor technology. In parallel, AlN possesses outstanding piezoelectric and mechanical performances, which can provide new aspects for controlling phonons and photons at the wavelength scale using nanophotonic architectures. These characteristics pose AlN as a promising candidate to address the drawbacks in conventional silicon and silicon nitride platforms. In this review, we aim to present recent advances achieved in AlN photonic integrated circuits ranging from material processing and passive optical routing to active functionality implementation such as electro-optics, piezo-optomechanics, and all-optical nonlinear frequency conversion. Finally, we highlight the challenges and future prospects existing in AlN nanophotonic chips.
Subject
Atomic and Molecular Physics, and Optics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献