Designing and simulating realistic spatial frequency domain imaging systems using open-source 3D rendering software

Author:

Crowley JaneORCID,Gordon George S. D.ORCID

Abstract

Spatial frequency domain imaging (SFDI) is a low-cost imaging technique that maps absorption and reduced scattering coefficients, offering improved contrast for important tissue structures such as tumours. Practical SFDI systems must cope with various imaging geometries including imaging planar samples ex vivo, imaging inside tubular lumen in vivo e.g. for endoscopy, and measuring tumours or polyps of varying morphology. There is a need for a design and simulation tool to accelerate design of new SFDI systems and simulate realistic performance under these scenarios. We present such a system implemented using open-source 3D design and ray-tracing software Blender that simulates media with realistic absorption and scattering in a wide range of geometries. By using Blender’s Cycles ray-tracing engine, our system simulates effects such as varying lighting, refractive index changes, non-normal incidence, specular reflections and shadows, enabling realistic evaluation of new designs. We first demonstrate quantitative agreement between Monte-Carlo simulated absorption and reduced scattering coefficients with those simulated from our Blender system, achieving 16% discrepancy in absorption coefficient and 18% in reduced scattering coefficient. However, we then show that using an empirically derived look-up table the errors reduce to 1% and 0.7% respectively. Next, we simulate SFDI mapping of absorption, scattering and shape for simulated tumour spheroids, demonstrating enhanced contrast. Finally we demonstrate SFDI mapping inside a tubular lumen, which highlighted a important design insight: custom look-up tables must be generated for different longitudinal sections of the lumen. With this approach we achieved 2% absorption error and 2% scattering error. We anticipate our simulation system will aid in the design of novel SFDI systems for key biomedical applications.

Funder

UK Research and Innovation

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3