Design of DWDM optical communication systems with different modulation formats using DCF and a repeater

Author:

Akram Dina S.,Al-Tamimi Haydar M.

Abstract

The dense wavelength division multiplexing (DWDM) technique has been used to provide a large capacity and low bandwidth loss for optical communication systems. In this paper, simulation designs by Optisystem15.0 of carrier-suppressed return to zero (CSRZ), differential phase shift keying (DPSK), and intensity modulation is proposed to determine which modulation format is more compatible with four and eight DWDM channels for transmitting an optical signal over 400 km distance. For a long optical path, the dispersion compensation fiber (DCF) technique is proposed to eliminate dispersion effects and increase the possibility of transmitting multiple optical wavelengths over long single-mode fiber. Optical amplifiers are used to amplify the optical signal with a distorted signal and process the attenuation caused by the long transmission distance. In DCF network design, CSRZ offers the best performance because of the large quality factor (24.560) and high threshold power (15 dBm), which make the system compatible with increased distance between the transmitter and receiver; next is intensity modulation with a 24.5604 quality factor and 13 dBm threshold power value; DPSK comes in last with the worst performance, with a quality factor of 10 at 13 dBm power due to non-linear effects, especially non-linear phase noise. In the repeater design, the DPSK modulation format has the best performance with a large quality factor of 20.7913 at a high threshold power of 14 dBm for 150 GHz spacing; this is because the repeater technique is compatible with reducing the non-linear effects of the DPSK format. CSRZ and intensity modulation have the same performance with a 12 quality factor at 4 dBm power for intensity modulation and 3 dBm power for CSRZ modulation.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3