Low complexity deep neural network equalizer based on the multi-source domain transfer learning in IMDD system

Author:

Fang Xiangmin,Bi Meihua1,Li Zhengmin,Jin LiangORCID,Yang GuoweiORCID,Shang Junna,Hu MiaoORCID

Affiliation:

1. Shanghai Jiao Tong University

Abstract

In this paper, we demonstrate a newly designed multi-source domain transfer learning (MST) scheme to reduce the training cost of deep neural network (DNN) based equalizer in intensity-modulation and direct-detection (IMDD) systems. Different from a common transfer learning algorithm, in this scheme, data with different channel parameters is selected and proportionally used to construct a multi-source domain dataset. This allows training the source domain in a single task while ensuring the model's generalization ability and stability. In an 80Gb/s PAM-4 IMDD short reach system, our proposed MST equalizer was proven effective. The corresponding results demonstrate that, compared to a conventional DNN equalizer, the proposed MST equalizer can achieve a bit error rate that meets the hard decision-forward error correction threshold while saving 87% of the iteration epochs and 65% of the training data.

Funder

Department of Education of Zhejiang Province

State Key Laboratory of Advanced Optical Communication Systems and Networks

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3