Non-differentiable angular dispersion as an optical resource

Author:

Hall Layton A.ORCID,Abouraddy Ayman F.ORCID

Abstract

Introducing angular dispersion into a pulsed field associates each frequency with a particular angle with respect to the propagation axis. A perennial yet implicit assumption is that the propagation angle is differentiable with respect to the frequency. Recent work on space–time wave packets has shown that the existence of a frequency at which the derivative of the propagation angle does not exist—which we refer to as non-differentiable angular dispersion—allows for the optical field to exhibit unique and useful characteristics that are unattainable by endowing optical fields with conventional angular dispersion. Because these novel, to the best of our knowledge, features are retained in principle even when the specific non-differentiable frequency is not part of the selected spectrum, the question arises as to the impact of the proximity of the spectrum to this frequency. We show here that operating in the vicinity of the non-differentiable frequency is imperative to reduce the deleterious impact of (1) errors in implementing the angular-dispersion profile and (2) the spectral uncertainty intrinsic to finite-energy wave packets in any realistic system. Non-differential angular dispersion can then be viewed as a resource—quantified by a Schmidt number—that is maximized in the vicinity of the non-differentiable frequency. These results will be useful in designing novel phase-matching of nonlinear interactions in dispersive media.

Funder

Office of Naval Research

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3