Miniature Fourier transform spectrometer based on a fiber-tip interferometer

Author:

Han Chunyang1ORCID,Ding Hui1,Li Baojin1,Shi Lei1,Xu Haodong1

Affiliation:

1. Xi’an Jiaotong University

Abstract

The miniaturization of spectrometers have attracted much attention owning to the demand for portable or in situ spectral analysis in a wide variety of fields, but it is a great challenge to push them into practical applications due to high cost, complicated configuration, and sensitivity to external disturbance. We report on a miniature Fourier transform (FT) spectrometer based on fiber-tip Fizeau interferometer. Hand pulling or any other types of force can be used to drive optical path difference (OPD) scan. Interferences are monitored as a function of time by two photodetectors, one is used to detect the whole interferogram while the other to measure single-wavelength interferogram. In this design, the instantaneous interference intensity as well as OPD can be obtained in an accurate way so that the exact spatial interferogram of the incident spectrum can be worked out. Consequently, the incident spectrum can be retrieved by FT method. A resolution of 7.69 cm−1 in the wavelength range of 1400 nm ∼ 1700 nm is achieved. Experimental results show that the performance of our device is comparable to the commercial benchtop spectrometer. Our device is independent of the complicated fabrication procedures, easy of usage, and cost effective. We envision that the proposed design will inspire a new concept for constructing simple and cheap spectrometers that is well suited for practical applications.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3