Multi-kernel driven 3D convolutional neural network for automated detection of lung nodules in chest CT scans

Author:

Wu Ruoyu,Liang Changyu1,Zhang Jiuquan1,Tan QiJuan1,Huang HongORCID

Affiliation:

1. Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital

Abstract

The accurate position detection of lung nodules is crucial in early chest computed tomography (CT)-based lung cancer screening, which helps to improve the survival rate of patients. Deep learning methodologies have shown impressive feature extraction ability in the CT image analysis task, but it is still a challenge to develop a robust nodule detection model due to the salient morphological heterogeneity of nodules and complex surrounding environment. In this study, a multi-kernel driven 3D convolutional neural network (MK-3DCNN) is proposed for computerized nodule detection in CT scans. In the MK-3DCNN, a residual learning-based encoder-decoder architecture is introduced to employ the multi-layer features of the deep model. Considering the various nodule sizes and shapes, a multi-kernel joint learning block is developed to capture 3D multi-scale spatial information of nodule CT images, and this is conducive to improving nodule detection performance. Furthermore, a multi-mode mixed pooling strategy is designed to replace the conventional single-mode pooling manner, and it reasonably integrates the max pooling, average pooling, and center cropping pooling operations to obtain more comprehensive nodule descriptions from complicated CT images. Experimental results on the public dataset LUNA16 illustrate that the proposed MK-3DCNN method achieves more competitive nodule detection performance compared to some state-of-the-art algorithms. The results on our constructed clinical dataset CQUCH-LND indicate that the MK-3DCNN has a good prospect in clinical practice.

Funder

National Natural Science Foundation of China

Innovation Program for Chongqing Overseas Returnees

Graduate Research and Innovation Foundation of Chongqing

Visiting Scholar Foundation of Key Laboratory of Optoelectronic Technology and Systems (Chongqing University), Ministry of Education

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3