Unveiling reflectance spectral characteristics of floating plastics across varying coverages: insights and retrieval model

Author:

Wang Shengqiang12,Zhao Wenyuan,Sun Deyong2,Li Zhenghao,Shen Chunzhu3,Bu Xinguo3,Zhang Hailong2

Affiliation:

1. Key Laboratory of Coastal Zone Exploitation and Protection

2. Key Laboratory of Space Ocean Remote Sensing and Application

3. Jiangsu Province Land Surveying and Planning Institute

Abstract

Marine floating debris, particularly chemically stable plastics, poses a significant global environmental concern. These materials, due to their prevalence and durability, linger on the ocean surface for extended durations, inflicting considerable harm on marine ecosystems, life, and the food chain. The traditional methodology for investigating marine floating debris mainly uses field observations, which are time-consuming, laborious, and constrained in observational scope. Consequently, there is an urgent need for more effective methodologies, such as remote sensing, to monitor marine floating debris, which will be of great significance for enhancing the management of their pollution. In this study, we employ controlled experiments and theoretical model simulations to investigate the spectral characteristics of remote sensing reflectance (Rrs(λ)) of two common types of floating plastic debris, specifically polyvinyl chloride (PVC) buoys and polypropylene (PP) bottles. Our analysis reveals distinct Rrs(λ) spectral characteristics for each type of plastic debris, differing significantly from that of the background water. Furthermore, both PVC buoys and PP bottles exhibit a similar absorption valley in the short-wave infrared region, with its depth increasing alongside the plastic coverage. Based on these findings, we develop a novel floating plastic index (FPI) and a corresponding retrieval model for estimating the coverage of floating plastic debris. Validation with simulated data and measurements from control experiments shows good performance of the retrieval model with high inversion accuracy, demonstrated by the values of the coefficient of determination, mean percentage error, mean absolute percentage error, and root mean square error of 0.97, -0.3%, 17.5%, and 3.98%, respectively, for the experimentally measured dataset. Our research provides a theoretical and methodological foundation for remote sensing retrieval of the coverages of floating PVC and PP plastics, as well as offers valuable insights for the analysis of other floating debris types in future studies.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Open Fund of Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources

Open Fund of State Key Laboratory of Remote Sensing Science

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3