High-power idler-resonant intracavity KTA OPO driven by a dual-loss-modulated Q-switched mode-locked laser with AOM and Sb2Te3 nanosheets

Author:

Han Chao,Chu HongweiORCID,Feng Tianli,Zhao Shengzhi,Li DechunORCID,Feng Chuansheng,Zhao JiaORCID,Huang Weiping

Abstract

By using Sb2Te3 nanosheets as saturable absorbers (SA) and an acousto-optic modulator (AOM), a laser-diode (LD) end-pumped idler-resonant KTiOAsO4 (KTA)-based intracavity optical parametric oscillator (IOPO) pumped by a dual-loss-modulated Q-switched mode-locked (QML) laser has been realized. The experimental results show that the pulse widths of the Q-switched envelope and the mode-locking pulse numbers underneath the Q-switched envelope decrease as the pump power increases. When the pump power reaches a certain value, only one mode-locking pulse underneath a Q-switched envelope exists, resulting in the generation of the subnanosecond mode-locking pulses of OPO with the repetition rate of AOM. The minimum mode-locking pulse durations of the signal and idler waves were measured to be 545 and 936 ps at an AOM frequency of 1 kHz and a diode pump power of 22.45 W, corresponding to the maximum peak powers of 648 and 185 kW, respectively. Furthermore, a set of coupled rate equations for the dual-loss-modulated QML laser-pumped intracavity idler-resonant OPO was formulated according to the Gauss distribution of intracavity photon density. The numerical simulations of these equations agree with the experimental results. These results collectively suggest the potential application of Sb2Te3 as a promising nanomaterial in the realm of optoelectronics.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3