Affiliation:
1. Toyota Technological Institute
Abstract
Broadband supercontinuum laser sources in the mid-infrared region have attracted enormous interest and found significant applications in spectroscopy, imaging, sensing, defense, and security. Despite recent advances in mid-infrared supercontinuum laser sources using infrared fibers, the average power of those laser sources is limited to 10-watt-level, and further power scaling to over 50 W (or hundred-watt-level) remains a significant technological challenge. Here, we report an over 50 W all-fiber mid-infrared supercontinuum laser source with a spectral range from 1220 to 3740 nm, by using low loss (<0.1 dB/m) fluorotellurite fibers we developed as the nonlinear medium and a tilted fusion splicing method for reducing the reflection from the fluorotellurite-silica fiber joint. Furthermore, the scalability of all-fiber mid-infrared supercontinuum laser sources using fluorotellurite fibers is analyzed by considering thermal effects and optical damage, which verifies its potential of power scaling to hundred-watt-level. Our results pave the way for realizing all-fiber hundred-watt-level mid-infrared lasers for real applications.
Funder
National Natural Science Foundation of China
the Opened Fund of the State Key Laboratory of Integrated Optoelectronics
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献