Affiliation:
1. Central South University of Forestry and Technology
2. Central South University
Abstract
We theoretically explore the conditions for generating optical bistability (OB) in a heterodimer comprised of a semiconductor quantum dot (SQD) and a metallic nanoshell (MNS). The MNS is made of a metallic nanosphere as a core and a dielectric material as a shell. For the specific hybrid system considered, the bistable effect appears only if the frequency of the pump field is equal to (or slightly less than) the exciton frequency for a proper shell thickness. Bistability phase diagrams, when plotted, show that the dipole-induced bistable region can be greatly broadened by changing the shell thickness of the MNS in a strong exciton-plasmon coupling regime. In particular, we demonstrate that the multipole polarization not only narrows the bistable zone but also enlarges the corresponding thresholds for a given intermediate scaled pumping intensity. On the other hand, when the SQD couples strongly with the MNS, the multipole polarization can also significantly broaden the bistable region and induce a great suppression of the FWM (four-wave mixing) signal for a fixed shell thickness. These interesting findings offer a fresh understanding of the bistability conditions in an SQD/MNS heterodimer, and may be useful in the fabrication of high-performance and low-threshold optical bistable nanodevices.
Funder
Research Foundation of Education Bureau of Hunan Province
Natural Science Foundation of Hunan Province
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献