Affiliation:
1. University of Minnesota
2. Cornell University
3. University of Washington
Abstract
Rare-earth iron garnets with large magnetic gyrotropy, made with reduced thermal budgets, are ideal magneto-optical materials for integrated isolators. However, reduced thermal budgets impact Faraday rotation by limiting crystallization, and characterization of crystallinity is limited by resolution or scannable area. Here, electron backscatter diffraction (EBSD) is used to measure crystallinity in cerium substituted yttrium- and terbium-iron garnets (CeYIG and CeTbIG) grown on planar Si, crystallized using one-step rapid thermal processes, leading to large Faraday rotations > −3500 °/cm at 1550 nm. Varying degrees of crystallinity are observed in planar Si and patterned Si waveguides, and specific dependences of crystallite size are attributed to the nucleation/growth processes of the garnets and the lateral dimensions of the waveguide. On the other hand, a low thermal budget alternative–exfoliated CeTbIG nanosheets–are fully crystalline and maintain high Faraday rotations of −3200 °/cm on par with monolithically integrated thin film garnets.
Funder
Division of Electrical, Communications and Cyber Systems
Division of Materials Research
Subject
Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献