Affiliation:
1. Yantai University
2. FISEC Infomation Technology Company Limited
Abstract
Rogue waves (RWs) are extreme and rare waves that emerge unexpectedly in many natural systems and their formation mechanism and prediction have been extensively studied. Here, we numerically demonstrate the appearance of extreme events (EEs) for the first time, to the best of our knowledge, in the chaotic regimes of a two-element coupled semiconductor laser array. Based on coupled-mode theory, we characterize the occurrence of EEs by calculating the probability distribution, which confirms the RW-type feature of the intensity pulses, i.e., non-Gaussian distribution. Combining with the results of the 0-1 test for chaos, we confirm that EEs originate from deterministic nonlinearities in coupled semiconductor laser systems. We show that EEs can be predicted with a long anticipation time. Furthermore, simulation results manifest that the occurrence probability of EEs can be flexibly tuned by tailoring the coupling parameter space. With the help of two-dimension maps, the effects of key parameters, i.e., the waveguide structure and the pump level, on the formation of EEs are discussed systematically. This work provides a new platform for the research of EEs in a highly integrated structure and opens up a novel investigation field for coupled semiconductor laser arrays.
Funder
National Natural Science Foundation of China
Natural Science Research Project of Jiangsu Higher Education Institutions of China
Natural Science Foundation of Jiangsu Province
Natural Science Foundation of Shandong Province
The Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University
The Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献