Affiliation:
1. Medical University of Vienna
Abstract
Multiple scattering is one of the main factors that limits the penetration depth of optical coherence tomography (OCT) in scattering samples. We propose a method termed multi-focus averaging (MFA) to suppress the multiple-scattering signals and improve the image contrast of OCT in deep regions. The MFA method captures multiple OCT volumes with various focal positions and averages them in complex form after correcting the varying defocus through computational refocusing. Because the multiple-scattering takes different trajectories among the different focal position configurations, this averaging suppresses the multiple-scattering signal. Meanwhile, the single-scattering takes a consistent trajectory regardless of the focal position configuration and is not suppressed. Hence, the MFA method improves the ratio between the single-scattering signal and multiple-scattering signal, resulting in an enhancement in the image contrast. A scattering phantom and a postmortem zebrafish were measured to validate the proposed method. The results showed that the contrast of intensity images of both the phantom and zebrafish were improved using the MFA method, such that they were better than the contrast provided by the standard single focus averaging method. The MFA method provides a cost-effective solution for contrast enhancement through multiple-scattering reduction in tissue imaging using OCT systems.
Funder
Core Research for Evolutional Science and Technology
Japan Science and Technology Agency
Japan Society for the Promotion of Science
China Scholarship Council
Austrian Science Fund
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献