Improved crystal quality and enhanced optical performance of GaN enabled by ion implantation induced high-quality nucleation

Author:

Tao HongchangORCID,Xu Shengrui,Zhang Jincheng,Su Huake,Gao Yuan,Zhang Yachao,Zhou Hong,Hao Yue

Abstract

Hetero-epitaxial growth of GaN often leads to high density of threading dislocations, which poses a significant challenge to the promotion of the performance of GaN-based devices. In this study, we address this issue by utilizing an Al-ion implantation pretreatment on sapphire substrates, which induces high-quality regularly arranged nucleation and promotes the crystal quality of GaN. Specifically, we demonstrate that an Al-ion dose of 1013 cm-2 leads to a reduction of full width at half maximum values of (002)/(102) plane X-ray rocking curves from 204.7/340.9 arcsec to 187.0/259.5 arcsec. Furthermore, a systematic investigation of GaN film grown on the sapphire substrate with various Al-ion doses is also performed, and the nucleation layer growth evolution on different sapphire substrates is analyzed. As confirmed by the atomic force microscope results of the nucleation layer, the ion implantation induced high-quality nucleation is demonstrated, which results in the improved crystal quality of the as-grown GaN films. Transmission electron microscope measurement also proves the dislocation suppression through this method. In addition, the GaN-based light-emitting diodes (LEDs) were also fabricated based on the as-grown GaN template and the electrical properties are analyzed. The wall-plug efficiency at 20 mA has risen from 30.7% to 37.4% of LEDs with Al-ion implantation sapphire substrate at a dose of 1013 cm-2. This innovative technique is effective in the promotion of GaN quality, which can be a promising high-quality template for LEDs and electronic devices.

Funder

National Key Research and Development Program of China

Natural Science Basic Research Program of Shaanxi Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

State Key Laboratory on Integrated Optoelectronics

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3