Ocular aberration measurement with and without an aperture stop using a Shack–Hartmann wavefront sensor

Author:

Yang Yanrong12,Huang Linhai34,Zhao Junlei34,Gu Naiting34ORCID,Dai Yun12

Affiliation:

1. Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM

2. Ineye Hospital of Chengdu University of TCM

3. Chinese Academy of Sciences

4. University of Chinese Academy of Science

Abstract

Pupil size is an important parameter since it governs the magnitude of ocular aberrations. The pupil size of a human eye has significant individual differences and varies with light level and accommodation. In order to accurately measure ocular aberrations under different pupil sizes using a Shack–Hartmann wavefront sensor (SHWFS), two types of relationship matrices R(1) and R(2) were proposed, which corresponded to wavefront reconstruction with and without an aperture stop, respectively. The numerical and experimental results indicated that matrix R(2) can significantly improve the accuracy of wavefront restoration when the incident beam size is inconsistent with the wavefront reconstruction aperture. Meanwhile, the impact of the aperture stop on the reconstruction accuracy will become smaller and smaller as the ratio ρ of the outer area to the detection aperture decreases. This study not only can be used for accurately measuring ocular aberrations under different pupil sizes, but also for other variable aperture aberrations measurement in other applications.

Funder

Sichuan Natural Science Foundation

Sichuan Science and Technology Program

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BCLA CLEAR presbyopia: Mechanism and optics;Contact Lens and Anterior Eye;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3