Studying fluctuating trajectories of optically confined passive tracers inside cells provides familiar active forces

Author:

Nakul Urvashi,Roy Srestha,Nalupurackal Gokul,Chakraborty Snigdhadev,Siwach Priyanka,Goswami Jayesh,Edwina Privita1,Bajpai Saumendra Kumar1,Singh Rajesh1,Roy BasudevORCID

Affiliation:

1. IIT Madras

Abstract

In recent years, there has been a growing interest in studying the trajectories of microparticles inside living cells. Among other things, such studies are useful in understanding the spatio-temporal properties of a cell. In this work, we study the stochastic trajectories of a passive microparticle inside a cell using experiments and theory. Our theory is based on modeling the microparticle inside a cell as an active particle in a viscoelastic medium. The activity is included in our model from an additional stochastic term with non-zero persistence in the Langevin equation describing the dynamics of the microparticle. Using this model, we are able to predict the power spectral density (PSD) measured in the experiment and compute active forces. This caters to the situation where a tracer particle is optically confined and then yields a PSD for positional fluctuations. The low frequency part of the PSD yields information about the active forces that the particle feels. The fit to the model extracts such active force. Thus, we can conclude that trapping the particle does not affect the values of the forces extracted from the active fits if accounted for appropriately by proper theoretical models. In addition, the fit also provides system properties and optical tweezers trap stiffness.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3