Dual-step reconstruction algorithm to improve microscopy resolution by deep learning

Author:

Deng Qisheng,Zhu Zece1,Shu Xuewen

Affiliation:

1. Wuhan Textile University

Abstract

Deep learning plays an important role in the field of machine learning, which has been developed and used in a wide range of areas. Many deep-learning-based methods have been proposed to improve image resolution, most of which are based on image-to-image translation algorithms. The performance of neural networks used to achieve image translation always depends on the feature difference between input and output images. Therefore, these deep-learning-based methods sometimes do not have good performance when the feature differences between low-resolution and high-resolution images are too large. In this paper, we introduce a dual-step neural network algorithm to improve image resolution step by step. Compared with conventional deep-learning methods that use input and output images with huge differences for training, this algorithm learning from input and output images with fewer differences can improve the performance of neural networks. This method was used to reconstruct high-resolution images of fluorescence nanoparticles in cells.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Key Research and Development Program of Hubei Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Reference35 articles.

1. Deep learning

2. Deep learning in neural networks: An overview

3. Deep residual learning for image recognition;He,2016

4. Image Super-Resolution Using Deep Convolutional Networks

5. Deep learning: methods and applications;Deng,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3