Optofluidic zoom system with increased field of view and less chromatic aberration

Author:

Li Lin,Xie Na1,Li Jia-Qi2,Fu Jing-Yi1,Liu Shu-Bin,Wang Li-Hui3ORCID,Li Yu-Hai1,Li Lei

Affiliation:

1. National Key Laboratory of Electromagnetic Space Security

2. Wuyi University

3. Guangdong Academy of Sciences

Abstract

Imaging systems are widely used in many fields. However, there is an inherent compromise between field of view (FOV) and resolution. In this paper, we propose an optofluidic zoom system with increased FOV and less chromatic aberration, which can realize switching between large FOV and high resolution. The proposed system consists of a liquid prism, a zoom objective, an image sensor and image processing module, which can realize optical zoom and deflection. The proposed system achieves non-mechanical optical zoom from f = 40.5 mm to f = 84.0 mm. Besides, the angular resolution of zoom objective is up to 26"18 at f = 84.0 mm. The deflection range is ±10°, and the whole FOV of proposed system can reach up to 30.3°. The proposed system is compact and easy to machine. In addition, we reduce chromatic aberration produced by the liquid prism significantly. The proposed system can be used in monitor system, target tracking system, telescope system and so on.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3