Glaucoma detection model by exploiting multi-region and multi-scan-pattern OCT images with dynamical region score

Author:

Liu Kai1,Zhang Jicong

Affiliation:

1. City University of Hong Kong

Abstract

Currently, deep learning-based methods have achieved success in glaucoma detection. However, most models focus on OCT images captured by a single scan pattern within a given region, holding the high risk of the omission of valuable features in the remaining regions or scan patterns. Therefore, we proposed a multi-region and multi-scan-pattern fusion model to address this issue. Our proposed model exploits comprehensive OCT images from three fundus anatomical regions (macular, middle, and optic nerve head regions) being captured by four scan patterns (radial, volume, single-line, and circular scan patterns). Moreover, to enhance the efficacy of integrating features across various scan patterns within a region and multiple regional features, we employed an attention multi-scan fusion module and an attention multi-region fusion module that auto-assign contribution to distinct scan-pattern features and region features adapting to characters of different samples, respectively. To alleviate the absence of available datasets, we have collected a specific dataset (MRMSG-OCT) comprising OCT images captured by four scan patterns from three regions. The experimental results and visualized feature maps both demonstrate that our proposed model achieves superior performance against the single scan-pattern models and single region-based models. Moreover, compared with the average fusion strategy, our proposed fusion modules yield superior performance, particularly reversing the performance degradation observed in some models relying on fixed weights, validating the efficacy of the proposed dynamic region scores adapted to different samples. Moreover, the derived region contribution scores enhance the interpretability of the model and offer an overview of the model’s decision-making process, assisting ophthalmologists in prioritizing regions with heightened scores and increasing efficiency in clinical practice.

Funder

University Synergy Innovation Program of Anhui Province

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3