Phase measuring deflectometry for convex aspheric surface measurement

Author:

Yan Ziliang,Li Dahai,Zhang Xinwei,Ge Renhao

Abstract

This paper introduces what we believe to be a novel approach to accurately measure the shape of convex aspherical surfaces with large slope gradients. This approach employs a pre-distortion system to enhance the visibility of the structured light pattern that is captured by camera. The data processing involves iterative methods to obtain surface shape data. The initial step in the experimental calibration involves establishing a reference plane, which serves as the starting point for the iterative process. The calculation for slope is subsequently utilized to determine the initial slope of the surface under test, and the height of the tested element is derived by integrating these slopes. Through multiple iterations and continuous updating of the surface height, the precise and authentic true surface height is ultimately achieved. The method’s accuracy is assessed through the measurement of a highly steep convex aspherical area with a diameter of 5.2 mm and a radius of curvature of approximately 7.7 mm. The proposed method demonstrates root mean square accuracy that can reach half a wavelength when compared to the measurement results obtained from high-precision profilers.

Funder

National Natural Science Foundation of China

Sichuan University

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3