Abstract
Silicon photonics for data communication requires key components in the O-band (1260 nm−1310 nm). However, very few studies report silicon integrated magneto-optical thin films operating at this wavelength range. In this study, we report a method to fabricate polycrystalline Bi2Tb1Fe5O12 thin films on silicon substrates for O-band nonreciprocal photonic device applications. The films are fabricated by magnetron sputtering at room temperature followed by rapid thermal annealing for crystallization. Pure garnet phase is stabilized by a Y3Fe5O12 seed layer on silicon. The film deposited on silicon-on-insulator (SOI) waveguides showed saturation Faraday rotation of −3300 ± 183 deg/cm, propagation loss of 53.3 ± 0.3 dB/cm and a high figure of merit of 61.9 ± 3.8 deg/dB at 1310 nm wavelength, demonstrating promising potential for O-band integrated nonreciprocal photonic devices.
Funder
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
Science and Technology Department of Sichuan Province