Feasibility of the soft attention-based models for automatic segmentation of OCT kidney images

Author:

Moradi Mousa1ORCID,Du Xian1ORCID,Huan Tianxiao2,Chen Yu1

Affiliation:

1. University of Massachusetts

2. University of Massachusetts Chan Medical School

Abstract

Clinically, optical coherence tomography (OCT) has been utilized to obtain the images of the kidney’s proximal convoluted tubules (PCTs), which can be used to quantify the morphometric parameters such as tubular density and diameter. Such parameters are useful for evaluating the status of the donor kidney for transplant. Quantifying PCTs from OCT images by human readers is a time-consuming and tedious process. Despite the fact that conventional deep learning models such as conventional neural networks (CNNs) have achieved great success in the automatic segmentation of kidney OCT images, gaps remain regarding the segmentation accuracy and reliability. Attention-based deep learning model has benefits over regular CNNs as it is intended to focus on the relevant part of the image and extract features for those regions. This paper aims at developing an Attention-based UNET model for automatic image analysis, pattern recognition, and segmentation of kidney OCT images. We evaluated five methods including the Residual-Attention-UNET, Attention-UNET, standard UNET, Residual UNET, and fully convolutional neural network using 14403 OCT images from 169 transplant kidneys for training and testing. Our results show that Residual-Attention-UNET outperformed the other four methods in segmentation by showing the highest values of all the six metrics including dice score (0.81 ± 0.01), intersection over union (IOU, 0.83 ± 0.02), specificity (0.84 ± 0.02), recall (0.82 ± 0.03), precision (0.81 ± 0.01), and accuracy (0.98 ± 0.08). Our results also show that the performance of the Residual-Attention-UNET is equivalent to the human manual segmentation (dice score = 0.84 ± 0.05). Residual-Attention-UNET and Attention-UNET also demonstrated good performance when trained on a small dataset (3456 images) whereas the performance of the other three methods dropped dramatically. In conclusion, our results suggested that the soft Attention-based models and specifically Residual-Attention-UNET are powerful and reliable methods for tubule lumen identification and segmentation and can help clinical evaluation of transplant kidney viability as fast and accurate as possible.

Funder

UMass Interdisciplinary Faculty Research Award

National Center for Advancing Translational Sciences

National Institutes of Health

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3