Development of a biophotonic fiber sensor using direct-taper and anti-taper techniques with seven-core and four-core fiber for the detection of doxorubicin in cancer treatment

Author:

Li Xiangshan1,Singh Ragini,Zhang Bingyuan1,Kumar Santosh2ORCID,Li Guoru1

Affiliation:

1. Liaocheng University

2. Koneru Lakshmaiah Education Foundation

Abstract

Doxorubicin (DOX) is an important drug for cancer treatment, but its clinical application is limited due to its toxicity and side effects. Therefore, detecting the concentration of DOX during treatment is crucial for enhancing efficacy and reducing side effects. In this study, the authors developed a biophotonic fiber sensor based on localized surface plasmon resonance (LSPR) with the multimode fiber (MMF)-four core fiber (FCF)-seven core fiber (SCF)-MMF-based direct-taper and anti-taper structures for the specific detection of DOX. Compared to other detection methods, it has the advantages of high sensitivity, low cost, and strong anti-interference ability. In this experiment, multi-walled carbon nanotubes (MWCNTs), cerium-oxide nanorods (CeO2-NRs), and gold nanoparticles (AuNPs) were immobilized on the probe surface to enhance the sensor's biocompatibility. MWCNTs and CeO2-NRs provided more binding sites for the fixation of AuNPs. By immobilizing AuNPs on the surface, the LSPR was stimulated by the evanescent field to detect DOX. The sensor surface was functionalized with DOX aptamers for specific detection, enhancing its specificity. The experiments demonstrated that within a linear detection range of 0-10 µM, the sensitivity of the sensor is 0.77 nm/µM, and the limit of detection (LoD) is 0.42 µM. Additionally, the probe's repeatability, reproducibility, stability, and selectivity were evaluated, indicating that the probe has high potential for detecting DOX during cancer treatment.

Funder

Natural Science Foundation of Shandong Province

Double-Hundred Talent Plan of Shandong Province, China

Special Construction Project Fund for Shandong Province Taishan Mountain Scholars

Liaocheng University

Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3