Design, production, and characterization of a pair of positive and negative high dispersive mirrors for chirped pulse amplification systems

Author:

Chen YuORCID,Wang Yanzhi,Lu Yesheng,Zhang Yuhui1,Wang Zhihao1,Chen Chang,Shao Jianda23

Affiliation:

1. University of Chinese Academy of Sciences

2. CAS Center for Excellence in Ultra-Intense Laser Science

3. Hangzhou Institute for Advanced Study

Abstract

We report a novel modified Gires–Tournois interferometer (MGTI) starting design for high-dispersive mirrors (HDMs). The MGTI structure combines multi-G-T and conjugate cavities and introduces a large amount of dispersion while covering a wide bandwidth. With this MGTI starting design, a pair of positive (PHDM) and negative highly dispersive mirrors (NHDM) providing group delay dispersions of +1000 fs2 and -1000 fs2 in the spectral range of 750 nm to 850 nm is developed. The pulse stretching and compression capabilities of both HDMs are studied theoretically by simulating the pulse envelopes reflected from the HDMs. A near Fourier Transform Limited pulse is obtained after 50 bounces on each positive and negative HDM, which verifies the excellent matching between the PHDM and NHDM. Moreover, the laser-induced damage properties of the HDMs are studied using laser pulses of 800 nm and 40 fs. The damage thresholds of the PHDM and NHDM are approximately 0.22 J/cm2 and 0.11 J/cm2, respectively. The laser-induced blister structure of the HDMs is observed, the formation and evolution processes of the blister are evaluated.

Funder

NSAF Fund Jointly set up by the National Natural Science Foundation of China, and Chinese Academy of Engineering Physics

Strategic Priority Research Program of CAS

Shanghai Sailing Program

Youth Innovation Promotion Association of the Chinese Academy of Sciences

International Partnership Program of Chinese Academy of Sciences

China Postdoctoral Science Foundation

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3