Affiliation:
1. University of Chinese Academy of Sciences
2. CAS Center for Excellence in Ultra-Intense Laser Science
3. Hangzhou Institute for Advanced Study
Abstract
We report a novel modified Gires–Tournois interferometer (MGTI) starting design for high-dispersive mirrors (HDMs). The MGTI structure combines multi-G-T and conjugate cavities and introduces a large amount of dispersion while covering a wide bandwidth. With this MGTI starting design, a pair of positive (PHDM) and negative highly dispersive mirrors (NHDM) providing group delay dispersions of +1000 fs2 and -1000 fs2 in the spectral range of 750 nm to 850 nm is developed. The pulse stretching and compression capabilities of both HDMs are studied theoretically by simulating the pulse envelopes reflected from the HDMs. A near Fourier Transform Limited pulse is obtained after 50 bounces on each positive and negative HDM, which verifies the excellent matching between the PHDM and NHDM. Moreover, the laser-induced damage properties of the HDMs are studied using laser pulses of 800 nm and 40 fs. The damage thresholds of the PHDM and NHDM are approximately 0.22 J/cm2 and 0.11 J/cm2, respectively. The laser-induced blister structure of the HDMs is observed, the formation and evolution processes of the blister are evaluated.
Funder
NSAF Fund Jointly set up by the National Natural Science Foundation of China, and Chinese Academy of Engineering Physics
Strategic Priority Research Program of CAS
Shanghai Sailing Program
Youth Innovation Promotion Association of the Chinese Academy of Sciences
International Partnership Program of Chinese Academy of Sciences
China Postdoctoral Science Foundation
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献