Streak artifact suppressed back projection for sparse-view photoacoustic computed tomography

Author:

Wang Tong1ORCID,Chen Chenyang2,Shen Kang,Liu Wen1,Tian Chao2ORCID

Affiliation:

1. University of Science and Technology of China

2. Hefei Comprehensive National Science Center

Abstract

The development of fast and accurate image reconstruction algorithms under constrained data acquisition conditions is important for photoacoustic computed tomography (PACT). Sparse-view measurements have been used to accelerate data acquisition and reduce system complexity; however, reconstructed images suffer from sparsity-induced streak artifacts. In this paper, a modified back-projection (BP) method termed anti-streak BP is proposed to suppress streak artifacts in sparse-view PACT reconstruction. During the reconstruction process, the anti-streak BP finds the back-projection terms contaminated by high-intensity sources with an outlier detection method. Then, the weights of the contaminated back-projection terms are adaptively adjusted to eliminate the effects of high-intensity sources. The proposed anti-streak BP method is compared with the conventional BP method on both simulation and in vivo data. The anti-streak BP method shows substantially fewer artifacts in the reconstructed images, and the streak index is 54% and 20% lower than that of the conventional BP method on simulation and in vivo data, when the transducer number N=128. The anti-streak BP method is a powerful improvement of the BP method with the ability of artifact suppression.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Anhui Provincial Department of Science and Technology

University of Science and Technology of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3