Lateral shearing interferometry method based on double-checkerboard grating by suppressing aliasing effect

Author:

Liu Huiwen1,Shi Runzhou1ORCID,Zhu Yicheng1,Shao Yuqi1,Li Yuejia1,Bai Jian1

Affiliation:

1. Zhejiang University

Abstract

Ronchi lateral shearing interferometry is a promising wavefront sensing technology with the advantages of simple structure and no reference light, which can realize a high-precision wavefront aberration measurement. To obtain shear information in both directions, the conventional double-Ronchi interferometer sequentially applies two orthogonal one-dimensional Ronchi gratings as the object-plane splitting element of the optics under test. Simultaneously, another Ronchi grating is positioned on the image plane in the same orientation to capture two sets of interferograms, thereby enabling two-dimensional wavefront reconstruction. Mechanical errors will inevitably be introduced during grating conversion, affecting reconstruction accuracy. Based on this, we propose a lateral shearing interferometry applying double-checkerboard grating. Only unidirectional phase shift is needed to obtain shear information in two directions while evading the grating conversion step, aiming to streamline operational processes and mitigate the potential for avoidable errors. We employ scalar diffraction theory to analyze the full optical path propagation process of the double-checkerboard shearing interferometry and introduce a new reconstruction algorithm to effectively extract the two-dimensional shear phase by changing the grating morphology, suppressing the aliasing effect of irrelevant diffraction orders. We reduce the fitting error through iterative optimization to realize high-precision wavefront reconstruction. Compared with conventional Ronchi lateral shearing interferometry, the proposed method exhibits better robustness and stability in noisy environments.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Reference35 articles.

1. Optimizing and enhancing optical systems to meet the low k1 challenge;Flagello,2003

2. New paradigm in lens metrology for lithographic scanner: evaluation and exploration;Lai,2004

3. Extending immersion lithography down to 1x nm production nodes;De Boeij,2013

4. Application of Ronchi interferometry to testing large aperture flat mirrors;Stoltzmann,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3