Abstract
The Helmholtz-Kohlrausch effect signifies the discrepancy between brightness as a perceptual attribute and luminance as a physical metric across different chromaticities. Based on the concepts of brilliance and zero grayness proposed by Ralph Evans, equally bright colors were collected in Experiment 1 by asking observers to adjust the luminance for a given chromaticity to the glowing threshold. The Helmholtz-Kohlrausch effect is thus automatically incorporated. Similar to the diffuse white as a singular point along the luminance dimension, this reference boundary demarcates surface colors from illuminant colors and correlates with the MacAdam optimal colors, which provides not only an ecologically relevant basis but also a computational handle for interpolating to other chromaticities. By navigating across the MacAdam optimal color surface, the contributions of saturation and hue to the Helmholtz-Kohlrausch effect were further quantified via saturation scaling in Experiment 2. The implications of our findings for brightness modeling, color dimensions, and potential applications are discussed.
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献