Abstract
To avoid metal layer oxidation during the deposition of transparent conductive oxide (TCO)/metal/TCO multilayer films in an oxygen-containing atmosphere, the ultra-thin (<10 nm) titanium nitride (TiN) layer has been proposed to replace metal embedding in gallium-doped zinc oxide (GZO) film for the development of indium-free transparent electrodes. The effects of TiN thickness on the structure, morphology, electrical, and optical properties of GZO/TiN/GZO multilayer thin films deposited in argon–oxygen mixtures on glass substrates by magnetron sputtering are investigated. The experimental results reveal that multilayers with the 8 nm-thick TiN layer have the optimal performance (figure of merit of 2.75 × 10−1 Ω−1): resistivity of 4.68 × 10−5 Ω cm, and optical transmittance of above 91% in the visible region, which is superior to the sandwich film with the metal embedded layer.
Funder
Natural Science Foundation of Hubei Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献