Automated colonoscopy withdrawal phase duration estimation using cecum detection and surgical tasks classification

Author:

De Carvalho Thomas1ORCID,Kader Rawen23ORCID,Brandao Patrick1,González-Bueno Puyal Juana1ORCID,Lovat Laurence B.23,Mountney Peter1,Stoyanov Danail

Affiliation:

1. Odin Vision

2. University College London

3. University College London Hospital

Abstract

Colorectal cancer is the third most common type of cancer with almost two million new cases worldwide. They develop from neoplastic polyps, most commonly adenomas, which can be removed during colonoscopy to prevent colorectal cancer from occurring. Unfortunately, up to a quarter of polyps are missed during colonoscopies. Studies have shown that polyp detection during a procedure correlates with the time spent searching for polyps, called the withdrawal time. The different phases of the procedure (cleaning, therapeutic, and exploration phases) make it difficult to precisely measure the withdrawal time, which should only include the exploration phase. Separating this from the other phases requires manual time measurement during the procedure which is rarely performed. In this study, we propose a method to automatically detect the cecum, which is the start of the withdrawal phase, and to classify the different phases of the colonoscopy, which allows precise estimation of the final withdrawal time. This is achieved using a Resnet for both detection and classification trained with two public datasets and a private dataset composed of 96 full procedures. Out of 19 testing procedures, 18 have their withdrawal time correctly estimated, with a mean error of 5.52 seconds per minute per procedure.

Funder

Horizon 2020 Framework Programme

Royal Academy of Engineering

Engineering and Physical Sciences Research Council

Wellcome/EPSRC Centre for Interventional and Surgical Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3