Self-supervised Self2Self denoising strategy for OCT speckle reduction with a single noisy image

Author:

Ge Chenkun,Yu Xiaojun1ORCID,Yuan Miao,Fan Zeming,Chen Jinna2ORCID,Shum Perry Ping,Liu Linbo3ORCID

Affiliation:

1. Research & Development Institute of Northwestern Polytechnical University in Shenzhen

2. Southern University of Science and Technology

3. Nanyang Technological University

Abstract

Optical coherence tomography (OCT) inevitably suffers from the influence of speckles originating from multiple scattered photons owing to its low-coherence interferometry property. Although various deep learning schemes have been proposed for OCT despeckling, they typically suffer from the requirement for ground-truth images, which are difficult to collect in clinical practice. To alleviate the influences of speckles without requiring ground-truth images, this paper presents a self-supervised deep learning scheme, namely, Self2Self strategy (S2Snet), for OCT despeckling using a single noisy image. Specifically, in this study, the main deep learning architecture is the Self2Self network, with its partial convolution being updated with a gated convolution layer. Specifically, both the input images and their Bernoulli sampling instances are adopted as network input first, and then, a devised loss function is integrated into the network to remove the background noise. Finally, the denoised output is estimated using the average of multiple predicted outputs. Experiments with various OCT datasets are conducted to verify the effectiveness of the proposed S2Snet scheme. Results compared with those of the existing methods demonstrate that S2Snet not only outperforms those existing self-supervised deep learning methods but also achieves better performances than those non-deep learning ones in different cases. Specifically, S2Snet achieves an improvement of 3.41% and 2.37% for PSNR and SSIM, respectively, as compared to the original Self2Self network, while such improvements become 19.9% and 22.7% as compared with the well-known non-deep learning NWSR method.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Northwestern Polytechnical University

National Medical Research Council

Ministry of Education - Singapore

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3