Affiliation:
1. Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province
2. Ningbo Institute of Oceanography
3. Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province
Abstract
Gradient refractive index (GRIN) materials utilize an internally tailored refractive index in combination with the designed curvature of the optical element surface, providing the optical designer with additional freedom for correcting chromatic and spherical aberrations. In this paper, new GRIN materials suitable for the second (3-5 µm) and third (8-12 µm) atmospheric windows were successfully developed by the thermal diffusion method based on Ge20As20Se60-xTex series high refractive index glasses, where the maximum refractive index difference (Δn) at 4 µm and 10.6 µm were 0.281 and 0.277, respectively. The diffusion characteristics and refractive index distribution of the GRIN glass were analyzed by Raman characterization. Furthermore, the performance of GRIN singlet and homogeneous singlet in the LWIR band (8 µm, 10.6 µm (primary wavelength), 12 µm) was compared, and the results showed that the GRIN singlet had better chromatic aberration correction and unique dispersion characteristics.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Zhejiang Province
Natural Science Foundation of Zhejiang Province
Fundamental Research Funds for the Provincial Universities of Zhejiang
K. C. Wong Magna Fund at Ningbo University
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献