Automatic force-controlled 3D photoacoustic system for human peripheral vascular imaging

Author:

Xing Baicheng,He Zhengyan,Zhou Fang,Zhao YuanORCID,Shan TianqiORCID

Abstract

Photoacoustic (PA) imaging provides unique advantages in peripheral vascular imaging due to its high sensitivity to hemoglobin. Nevertheless, limitations associated with handheld or mechanical scanning by stepping motor techniques have precluded photoacoustic vascular imaging from advancing to clinical applications. As clinical applications require flexibility, affordability, and portability of imaging equipment, current photoacoustic imaging systems developed for clinical applications usually use dry coupling. However, it inevitably induces uncontrolled contact force between the probe and the skin. Through 2D and 3D experiments, this study proved that contact forces during the scanning could significantly affect the vascular shape, size, and contrast in PA images, due to the morphology and perfusion alterations of the peripheral blood vessels. However, there is no available PA system that can control forces accurately. This study presented an automatic force-controlled 3D PA imaging system based on a six-degree-of-freedom collaborative robot and a six-dimensional force sensor. It is the first PA system that achieves real-time automatic force monitoring and control. This paper's results, for the first time, demonstrated the ability of an automatic force-controlled system to acquire reliable 3D PA images of peripheral blood vessels. This study provides a powerful tool that will advance PA peripheral vascular imaging to clinical applications in the future.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

China Postdoctoral Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3