Generalized transfer matrix model for dipole radiation-dynamics modification in layered media: application to incoherent light-emitting structures in thin film geometry

Author:

Ndiaye Amade12ORCID,Seassal Christian2,Drouard Emmanuel2ORCID,Bakir Badhise Ben1

Affiliation:

1. Univ. Grenoble Alpes

2. Univ. Lyon, Institut des Nanotechnologies de Lyon-INL

Abstract

Incoherent light-emitting structures are of key interest for many fields in optoelectronics and spontaneous emission is the physical phenomenon underlying their light emission process. In this paper, we propose a novel full-matrix algebraic framework for modeling spontaneous emission modification from radiating electric dipoles in layered media. This formalism generalizes the standard 2 × 2 transfer-matrices into a compact 3 × 3 framework, which thus allows to treat dipole radiation directly into the matrix formulation as a source matrix. Its accuracy has been confirmed by incoherent 3D-FDTD. It has then been extended to complex emitter regions with both spectral and spatial distributions using incoherent combination. Finally, we applied this approach to various examples to demonstrate its applicability. Since it only requires modest computational efforts, we hope that this model can help better understand spontaneous emission dynamics in layered media and thus pave the way to novel design guidelines for devices in many fields of optoelectronics.

Funder

Horizon 2020 Framework Programme

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3