Abstract
Nonlocal wavelength-to-time mapping between frequency-entangled photon pairs generated with the process of spontaneous parametric down-conversion is theoretically analyzed and experimentally demonstrated. The spectral filtering pattern experienced by one photon in the photon pair will be non-locally mapped into the time domain when the other photon propagates inside a dispersion-compensation fiber with large group velocity dispersion. Our work, for the first time, points out that the spectral bandwidth of the pump laser will become the dominated factor preventing the improvement of the spectral resolution when the involved group velocity dispersion is large enough, which provides an excellent tool for characterizing the resolution of a nonlocal wavelength-to-time mapping for further quantum information applications.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
National Youth Talent Support Program of China
The Key R&D Program of Guangdong Province
National Key Research and Development Program of China
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献