Improved dual-aggregation polyp segmentation network combining a pyramid vision transformer with a fully convolutional network

Author:

Li Feng,Huang Zetao,Zhou Lu1,Chen Yuyang,Tang Shiqing,Ding Pengchao,Peng Haixia1,Chu Yimin1

Affiliation:

1. Shanghai Jiao Tong University School of Medicine

Abstract

Automatic and precise polyp segmentation in colonoscopy images is highly valuable for diagnosis at an early stage and surgery of colorectal cancer. Nevertheless, it still posed a major challenge due to variations in the size and intricate morphological characteristics of polyps coupled with the indistinct demarcation between polyps and mucosas. To alleviate these challenges, we proposed an improved dual-aggregation polyp segmentation network, dubbed Dua-PSNet, for automatic and accurate full-size polyp prediction by combining both the transformer branch and a fully convolutional network (FCN) branch in a parallel style. Concretely, in the transformer branch, we adopted the B3 variant of pyramid vision transformer v2 (PVTv2-B3) as an image encoder for capturing multi-scale global features and modeling long-distant interdependencies between them whilst designing an innovative multi-stage feature aggregation decoder (MFAD) to highlight critical local feature details and effectively integrate them into global features. In the decoder, the adaptive feature aggregation (AFA) block was constructed for fusing high-level feature representations of different scales generated by the PVTv2-B3 encoder in a stepwise adaptive manner for refining global semantic information, while the ResidualBlock module was devised to mine detailed boundary cues disguised in low-level features. With the assistance of the selective global-to-local fusion head (SGLFH) module, the resulting boundary details were aggregated selectively with these global semantic features, strengthening these hierarchical features to cope with scale variations of polyps. The FCN branch embedded in the designed ResidualBlock module was used to encourage extraction of highly merged fine features to match the outputs of the Transformer branch into full-size segmentation maps. In this way, both branches were reciprocally influenced and complemented to enhance the discrimination capability of polyp features and enable a more accurate prediction of a full-size segmentation map. Extensive experiments on five challenging polyp segmentation benchmarks demonstrated that the proposed Dua-PSNet owned powerful learning and generalization ability and advanced the state-of-the-art segmentation performance among existing cutting-edge methods. These excellent results showed our Dua-PSNet had great potential to be a promising solution for practical polyp segmentation tasks in which wide variations of data typically occurred.

Funder

National Key Research and Development Program of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3