Abstract
Underwater active polarization imaging is a promising imaging method, however, it is ineffective in some scenarios. In this work, the influence of the particle size from isotropic (Rayleigh regime) to forward-scattering on polarization imaging is investigated by both Monte Carlo simulation and quantitative experiments. The results show the non-monotonic law of imaging contrast with the particle size of scatterers. Furthermore, through polarization-tracking program, the polarization evolution of backscattered light and target diffuse light are detailed quantitatively with Poincaré sphere. The findings indicate that the noise light’s polarization and intensity scattering field change significantly with the particle size. Based on this, the influence mechanism of the particle size on underwater active polarization imaging of reflective targets is revealed for the first time. Moreover, the adapted principle of scatterer particle scale is also provided for different polarization imaging methods.
Funder
National Natural Science Foundation of China
Natural Science Basic Research Program of Shaanxi Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献