Dipole-lattice nanoparticle resonances in finite arrays

Author:

Karimi Vahid,Babicheva Viktoriia E.ORCID

Abstract

We investigate how the periodic lattices define the collective optical characteristics of the silicon and titanium nanoparticle arrays. We examine the effects of dipole lattice on the resonances of optical nanostructures, including those made of lossy materials, such as titanium. Our approach involves employing coupled-electric-magnetic-dipole calculations for finite-size arrays, as well as lattice sums for effectively infinite arrays. Our model shows that the convergence to the infinite-lattice limit is faster when the resonance is broad, requiring fewer array particles. Our approach differs from previous works by altering the lattice resonance through modifications in the array period. We observed that a higher number of nanoparticles is necessary to achieve convergence to the infinite-array limit. Additionally, we observe that the lattice resonances excited next to higher diffraction orders (such as second order) converge more quickly toward the ideal case of an infinite array than the lattice resonances related to the first diffraction order. This work reports on the significant advantages of using a periodic arrangement of lossy nanoparticles and the role of collective excitation in enhancing response from transition metals, such as titanium, nickel, tungsten, and so on. The periodic arrangement of nanoscatterers allows for the excitation of strong dipoles, boosting the performance of nanophotonic devices and sensors by improving the strength of localized resonances.

Funder

U.S. Department of Energy

University of New Mexico

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multipole Mie and lattice resonances in metasurfaces with nanoantenna arrays;Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XXI;2023-10-05

2. Metasurface engineering for collective resonances, tailored emissivity, and enhanced photodetectors;Metamaterials, Metadevices, and Metasystems 2023;2023-10-04

3. Multipole Mie Resonances in MXene-Antenna Arrays;The Journal of Physical Chemistry C;2023-08-30

4. Lattice resonances of lossy transition metal and metalloid antennas;MRS Advances;2023-04-10

5. Optical Processes behind Plasmonic Applications;Nanomaterials;2023-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3