Affiliation:
1. Institute of Physics
2. University of Chinese Academy of Sciences
3. Hong Kong University of Science and Technology
4. Zhangjiang Laboratory
5. Nanyang Technological University
6. Huazhong University of Science and Technology
Abstract
Terahertz (THz) radar offers significant advantages, notably high-frequency and strong penetration ability, making it highly promising for applications in aerospace, non-destructive testing, and other imaging scenarios. However, existing THz radar imaging technologies face challenges in large-scale target detection due to the complexity and high costs of the system, which limits their development and commercial application. Here we establish a radar system based on a one-dimensional photonic crystal structure-enhanced 4-inch spintronic strong-field THz emitter and obtain THz radar signals and imaging with a signal-to-noise ratio of ∼58 dB and a bandwidth exceeding 5 THz. Through the precise design of the emitter structure, we ensure not only the generation of a high-quality uniform plane wave when the THz beam diameter reaches 4 in. but also the applicability of the THz field strength for radar imaging measurements within a 4-in. field of view area. The approach provides a promising platform for ultra-broadband, high-resolution, near-monostatic THz radar imaging, with broad potential applications in aerospace engineering, stealth testing, THz 3D reconstruction, and THz tomography.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Wuhan National Laboratory for Optoelectronics