1. Baño-Medina, J., R. Manzanas, and J. M. Gutiérrez, 2020: Configuration and intercomparison of deep learning neural models for statistical downscaling. Geosci. Model Dev., 13, 2109–2124.
2. Bi, K., L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, 2023: Accurate medium-range global weather forecasting with 3D neural networks. Nature, 619, 533–538.
3. Bodnar, C., W. P. Bruinsma, A. Lucic, M. Stanley, A. Vaughan, J. Brandstetter, P. Garvan, M. Riechert, J. A. Weyn, H. Dong, J. K. Gupta, K. Thambiratnam, A. T. Archibald, C.-C. Wu, E. Heider, M. Welling, R. E. Turner, and P. Perdikaris, 2024: Aurora: A foundation model of the atmos582222phere. arXiv: physics, 2405.13063v2 [physics.ao-ph], doi: 10.48550/arXiv. 2405.13063.
4. Doan, Q.-V., H. Kusaka, T. Sato, and F. Chen, 2021: S-SOM v1.0: A structural self-organizing map algorithm for weather typing. Geosci. Model Dev., 14, 2097–2111.
5. He, K., X. Zhang, S. Ren, and J. Sun, 2016: Deep residual learning for image recognition. Proceeding of The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vegas, NV, USA, 770–778.