Morphological Evaluation of Mitral Valve Based on Three-dimensional Printing Models: Potential Implication for Mitral Valve Repair

Author:

Yang Yuanting1,Wang Hao1,Song Hongning1,Hu Yugang1,Gong Qincheng1,Xiong Ye1,Liu Junbi1,Ren Wei2,Zhou Qing1

Affiliation:

1. Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China

2. Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China

Abstract

Abstract Objective: This study aimed to analyze the morphological characteristics of rheumatic (RMVD) and degenerative mitral valve diseases (DMVD) based on three-dimensional (3D) printing model before and after surgery and to explore the potential implication of the 3D printing model for mitral valve (MV) repair.Methods: 3D transesophageal echocardiography (TEE) data of the MV were acquired in 45 subjects (15 with RMVD, 15 with DMVD, and 15 with normal MV anatomy). 3D printing models of the MV were constructed by creating molds to be printed with water-soluble polyvinyl alcohol, then filled with room temperature vulcanizing silicone. The parameters of the annulus and leaflet of the MV were acquired and analyzed using the 3D printing model. Mitral valve repair was simulated on 3D printing models of 10 subjects and compared with the actual operation performed on patients. The effects of surgery were assessed by evaluating the changes in coaptation length (CL) and the annular height to commissural width ratio (AHCWR) before and after MV repairs. The correlations of the grade of mitral regurgitation with CL and AHCWR were analyzed.Results: 3D silicone MV models were all successfully constructed based on 3D TEE data. Compared with the normal groups, the mitral annulus size in the RMVD groups showed no significant differences. In contrast, mitral annulus in DMVD groups was dilated and flattened with diameters of anteroposterior, anterolateral-posteromedial, commissural width, annular circumferences, and area increased. Mitral repair was successfully simulated on 10 models with significant increase in leaflet coaptation area both in vivo and in vitro. Good agreement was observed in CL and AHCWR after surgery in the 3D printing model compared with real surgery on the patient valve. The grade of mitral regurgitation correlated inversely with CL (r = ‐0.87, P < 0.01) and AHCWR (r = ‐0.79, P < 0.01). Mitral valve repair was performed twice in one model to assess which provided a better outcome.Conclusions: 3D printing models of the MV based on 3D TEE data could be used in morphological analysis of the MV before and after surgery in RMVD and DMVD. Surgery simulation on 3D printing models could provide valuable information concerning morphological changes after surgery, with are closely associated with clinical outcomes.

Publisher

Compuscript, Ltd.

Reference20 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-dimensional printing in modelling mitral valve interventions;Echo Research & Practice;2023-08-02

2. Two-photon polymerization for 3D biomedical scaffolds: Overview and updates;Frontiers in Bioengineering and Biotechnology;2022-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3