Compares the effectiveness of the bagging method in classifying spices using the histogram of oriented gradient feature extraction technique

Author:

Muhathir Muhathir

Abstract

Spice classification is a crucial task in the food industry to ensure food safety and quality. This study focuses on the classification of spices using the Histogram of Oriented Gradient (HoG) feature extraction method and bagging method. The objective of this research is to compare the performance of three different models of bagging method, including Bootstrap Aggregating (Bagging), Random Forests, and Extra Tree Classifier, in classifying spices. The evaluation metrics used in this research are Precision, Recall, F1-Score, F2-Score, Jaccard Score, and Accuracy. The results show that the Random Forest model achieved the best performance, with precision, recall, F1-score, F2-Score, Jaccard, and Accuracy values of 0.861, 0.8633, 0.8587, 0.8607, 0.7694, and 0.8733 respectively. On the other hand, the Extra Tree Classifier had the lowest performance with precision, recall, F1-score, F2-Score, Jaccard, and Accuracy values of 0.7034, 0.7958, 0.7037, 0.7047, 0.5635, and 0.72 respectively. Overall, the results indicate a fairly good success rate in classifying spices using the HoG feature extraction method and bagging method. However, further evaluation is needed to improve the accuracy of the classification results, such as increasing the number of training data or considering the use of other feature extraction methods. The findings of this research may have significant implications for the food industry in ensuring the quality and safety of food products.

Publisher

Institute of Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid CNN & Random Forest Model for Effective Ginger Leaf Disease Diagnosis;2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM);2024-02-21

2. Hybrid CNN & Random Forest Model for Effective Clove Leaf Disease Dignosis;2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM);2024-02-21

3. Comparing Boosting and Bagging Algorithms for Image Classification;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

4. Exploring Approaches and Techniques for Human Activity Recognition in Video: A Comprehensive Overview;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3