The scope of artificial intelligence in retinopathy of prematurity (ROP) management

Author:

Maitra Puja1,Shah Parag K2,Campbell Peter J3,Rishi Pukhraj4

Affiliation:

1. Department of Vitreoretina Services, Aravind Eye Hospital, Chennai, Tamil Nadu, India

2. Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, Tamil Nadu, India

3. Department of Ophthalmology, Oregon Health and Science University, Portland, Oregon, United States

4. Ocular Oncology and Vitreoretinal Surgery, Truhlsen Eye Institute, University of Nebraska Medical Centre, Omaha, NE, USA

Abstract

Artificial Intelligence (AI) is a revolutionary technology that has the potential to develop into a widely implemented system that could reduce the dependence on qualified professionals/experts for screening the large at-risk population, especially in the Indian scenario. Deep learning involves learning without being explicitly told what to focus on and utilizes several layers of artificial neural networks (ANNs) to create a robust algorithm that is capable of high-complexity tasks. Convolutional neural networks (CNNs) are a subset of ANNs that are particularly useful for image processing as well as cognitive tasks. Training of these algorithms involves inputting raw human-labeled data, which are then processed through the algorithm’s multiple layers and allow CNN to develop their own learning of image features. AI systems must be validated using different population datasets since the performance of the AI system would vary according to the population. Indian datasets have been used in AI-based risk model that could predict whether an infant would develop treatment-requiring retinopathy of prematurity (ROP). AI also served as an epidemiological tool by objectively showing that a higher ROP severity was in Neonatal intensive care units (NICUs) that did not have the resources to monitor and titrate oxygen. There are rising concerns about the medicolegal aspect of AI implementation as well as discussion on the possibilities of catastrophic life-threatening diseases like retinoblastoma and lipemia retinalis being missed by AI. Computer-based systems have the advantage over humans in not being susceptible to biases or fatigue. This is especially relevant in a country like India with an increased rate of ROP and a preexisting strained doctor-to-preterm child ratio. Many AI algorithms can perform in a way comparable to or exceeding human experts, and this opens possibilities for future large-scale prospective studies.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3